
IIxp,IIxpxt and IIsym matlab objects

C. Ladroue

October 17, 2007

1 Introduction

IIxp and IIsym Matlab objects have been made to easily manipulate 1-dimensional
iterated integrals. This document explains how they work and how to use them.
IIxpxt objects are similar to IIxp but extended to the multi-dimensional case.

Iterated Integrals are integrals of the form:

X
(1221)
t =

∫
0≤u1···≤u4≤t

dx1(u1)dx2(u2)dx2(u3)dx1(u4) (1)

We call words the sequence of drivers defining the iterated integrals, for
example (1221).

Interstingly, it is possible to write the product of two iterated integrals as a
sum of other iterated integrals:

X
(w)
t X

(v)
t =

∑
z∈wdv

X
(z)
t (2)

where w,v are two words and d is the shuffle product - the set of all possible
combinations of w and v such that letters from each word are in their original
order.

IIxp and IIsym allow you to do simple operations on iterated integrals, in
order to build more and more complex objects for, for example, approximating
stochastic differential equations.

Requirements

You need to download the following directories: Classes/@IIxp, Classes/@IIxpxt,
Classes/@IIsym and utils II and add them to your Matlab path. You will
also need to compile utils II/II.c if you want to estimate the iterated inte-
grals. The Matlab Symbolic Math toolbox is required for IIsym objects. IIsym
still needs to be uploaded.

You can download these files using a subversion client with:
svn co https://coropa.svn.sourceforge.net/svnroot/coropa/trunk/MatlabII
Or download the tarball directly from
http://coropa.sourceforge.net/coropa matlabII.tar.gz

1



2 IIxp objects

An IIxp object is a linear combination of iterated integrals. Please have a look
at utils II/test IIxp.m for more examples.

Creating an IIxp

To create a new IIxp object, simply use the IIxp constructor as following:

>> P=IIxp([],2,[1],1.5,[2 2],-3)
+2
+1.5.X^(1)
-3.X^(2 2)
MaxDepth:5

P is an IIxp object, representing 2 + 1.5X
(1)
t − 3X

(22)
t . MaxDepth is a cut-off

point from which no more coefficients will be evaluated. The default is 5, it can
be specified as the last variable of the constructor. When IIxp’s are multiplied,
the number of coefficients grows exponentially and computations can take a very
long time. A cut-off point avoids this by truncating the linear combination. In
practice, there is no need to go further than 5 or 8.

The rest of the parameters are pairs of words/real numbers.

Arithmetic

A few simple operations are defined for IIxp objects: +,−, ∗ and power. They
are used the same way you would use them for regular numbers:

>> P=IIxp([],1,[1],4,[2 1],5)
+1
+4.X^(1)
+5.X^(2 1)
MaxDepth:5
>> Q=IIxp([],1,[1],-2,[2],3)
+1
-2.X^(1) +3.X^(2)
MaxDepth:5
>> P+Q
+2
+2.X^(1) +3.X^(2)
+5.X^(2 1)
MaxDepth:5
>> P-Q
+6.X^(1) -3.X^(2)
+5.X^(2 1)
MaxDepth:5
>> P*Q

2



+1
+2.X^(1) +3.X^(2)
-16.X^(1 1) +12.X^(1 2) +17.X^(2 1)
-10.X^(1 2 1) -20.X^(2 1 1) +15.X^(2 1 2) +30.X^(2 2 1)
MaxDepth:5
>> P^3
+1
+12.X^(1)
+96.X^(1 1) +15.X^(2 1)
+384.X^(1 1 1) +120.X^(1 2 1) +240.X^(2 1 1)
+480.X^(1 1 2 1) +960.X^(1 2 1 1) +1440.X^(2 1 1 1) +150.X^(2 1 2 1) +300.X^(2 2 1 1)
+600.X^(1 2 1 2 1) +1200.X^(1 2 2 1 1) +1200.X^(2 1 1 2 1) +2400.X^(2 1 2 1 1) +3600.X^(2 2 1 1 1)
MaxDepth:5

Note that P 3 should contain words of length 6 but those are not evaluated
since MaxDepth is set to 5.

Integrating

It’s also possible to integrate with respect to one or more drivers:

>> P=IIxp([],2,[1],1.5,[2 2],-3)
+2
+1.5.X^(1)
-3.X^(2 2)
MaxDepth:5
>> X(P,[2 1])
+2.X^(2 1)
+1.5.X^(1 2 1)
-3.X^(2 2 2 1)
MaxDepth:5

It has the effect of adding the number of the driver on the right of each integral.

Estimating

When the actual value of the drivers are known, it is possible to evaluate the
IIxp with estimate.m. This function calls II.c, written by Terry Lyons.

>> P=IIxp([],2,[1],1.5,[2 2],-3)
+2
+1.5.X^(1)
-3.X^(2 2)
MaxDepth:5
>> dt=1E-3;resolution=1E3;
>> Drivers=[dt*(0:resolution-1);[0 cumsum(randn(1,resolution-1)*sqrt(dt))]];
>> plot(Drivers(1,:),estimate(P,Drivers));

3



Example: stochastic differential equation

Let the SDE dyt = (−4t2 +5t+2)dt+(−t+2)dWt. A solution can be computed
recursively by the Picard iteration principle:

y0
t = 0

yn+1
t = y0 +

∫ 1

0

(−4(yn
t )2 + 5yn

t + 2)dt +
∫ 1

0

(−yn
t + 2)dWt

This can be easily implemented with an IIxp object up to a finite number
of iterations1:

>> P=IIxp;y0=1;
>> for k=1:5
P=y0+X(-4*P^2+5*P+2,’1’)+X(-P+2,’2’);
end;
>> P
+1
+3.X^1 +1.X^2
-9.X^11 -3.X^12 -3.X^21 -1.X^22
-45.X^111 +9.X^112 -15.X^121 +3.X^122 -15.X^211 +(...)
+783.X^1111 +45.X^1112 +189.X^1121 -9.X^1122 +(...)
-54.X^11111 -810.X^11112 -1098.X^11121 -54.X^11122 +(...)

And given the drivers’ value, we can evaluate the solution:

>> D=[linspace(0,1,500);brown(500,[0 1])];
>> y=estimate(P,D);
>> plot(y)

The Picard iteration algorithm is implemented in utils II/picard poly.m.

3 IIxpxt objects

IIxpxt are a natural extension of IIxp’s to the multi-dimensional case, where
each dimension contains an IIxp object. utils II/test IIxpxt.m demon-
strates some of the functions associated with these objects. It is possible to
do simple arithmetic, directly reference and assign coefficients, evaluate poly-
nomial of more than one variables and compute the approximate solution of a
polynomial SDE via the Picard Iteration algorithm.

For example, given the 2D SDE

dX =
(

0 −0.1
−0.2 0

)
Xdt +

(
0.003 0

0 0.04

)
dWt

where dWt is a two-dimensional Brownian motion, we calculate an expansion of
the solution up to depth 5 with:

1Again, note that coefficients for integrals whose word is of length more than MaxDepth

(here 5) are not evaluated.

4



>> M=cell(2,3);
>> M{1,1}=[0 1 -0.1];
>> M{1,2}=[0 0 0.03];
>> M{1,3}=0;
>> M{2,1}=[1 0 -0.2];
>> M{2,2}=0;
>> M{2,3}=[0 0 0.04];
>> X0=[1;1];
>> R=Picard_IIxpxt(X0,M,5)
+1
-0.1.X^(1) +0.03.X^(2)
+0.02.X^(1 1) -0.004.X^(3 1)
-0.002.X^(1 1 1) +0.0006.X^(2 1 1)
+0.0004.X^(1 1 1 1) -8e-05.X^(3 1 1 1)
+1.2e-05.X^(2 1 1 1 1)
MaxDepth:5
+1
-0.2.X^(1) +0.04.X^(3)
+0.02.X^(1 1) -0.006.X^(2 1)
-0.004.X^(1 1 1) +0.0008.X^(3 1 1)
+0.0004.X^(1 1 1 1) -0.00012.X^(2 1 1 1)
+1.6e-05.X^(3 1 1 1 1)
MaxDepth:5

R is then a two-dimensional IIxpxt object containing the expansion of the

solution of the SDE, when X0 =
(

1
1

)
.

4 IIsym objects

Description

IIsym objects are similar to IIxp objects but work as symbolic quantities, that
is, you don’t have to specify values for the coefficients of the IIxp. For example,
it is possible to define objects such as 1+aX

(1)
t +(b−c∗a)X(21)

t , and manipulate
them without having to give the program values for a, b and c:

>> P=IIsym([1],’a’,[1 2],’a+b’,[2 1],’c’)
+a.X^(1)
+a+b.X^(1 2) +c.X^(2 1)
MaxDepth:5

Please have a look at utils II/test IIsym.m. @IIsym requires the symbolic
toolbox.

5



Arithmetic

Simple operations are defined (+,−, ∗ and power), with the added bonus that
you can now use symbolic variables:

>> P*’a-b*c’
+(a-b*c)*a.X^(1)
+(a-b*c)*(a+b).X^(1 2) +(a-b*c)*c.X^(2 1)
>> P*P
+2*a^2.X^(1 1)
+4*a*(a+b).X^(1 1 2) +2*a*(a+b)+2*a*c.X^(1 2 1) +4*a*c.X^(2 1 1)
+4*(a+b)^2.X^(1 1 2 2) +2*(a+b)^2+2*(a+b)*c.X^(1 2 1 2) +4*(a+b)*c.X^(1 2 2 1) +4*(a+b)*c.X^(2 1 1 2) +2*(a+b)*c+2*c^2.X^(2 1 2 1) +4*c^2.X^(2 2 1 1)

The Picard iteration can be implemented as easily as before. For example,
given the SDE dyt = (at2 +bt+c)dt+(et+f)dWt, we simply write the following
loop:

>> P=IIsym;
>> for k=1:5,P=’y0’+X(’a’*P^2+’b’*P+’c’,[1])+X(’e’*P+’f’,[2]);end;
>> P
+y0
+a*y0^2+b*y0+c.X^(1) +e*y0+f.X^(2)
+2*a*(a*y0^2+b*y0+c)*y0+b*(a*y0^2+b*y0+c).X^(1 1) +e*(a*y0^2+b*y0+c).X^(1 2)+(...)
+a*(2*y0*(2*a*(a*y0^2+b*y0+c)*y0+b*(a*y0^2+b*y0+c))+2*(a*y0^2+b*y0+c)^2)+(...)
+(...)

This is notably slower2 than the IIxp version but we usually need to compute
the object only once: we can use it afterwards by giving actual values to the
variables to approximate the solution of all SDEs of that particular form.

Instantiation and estimation

Instantiation refers to the operation of giving values to some or all the abstract
variables present in an IIsym object. Estimation is the operation of giving values
to the iterated integrals, providing we know the actual values of the drivers.
instantiation is done with the instantiate.m function. The result is a new
IIsym object. If there is no abstract variables left in the IIsym object, it can be
turned into a IIxp object. findsym.m displays the abstract variables used in an
IIsym object.

>> P=IIsym([1],’a’,[1 2],’b+c’,[],1);
>> disp(findsym(P))
a, b, c
>> instantiate(P,{’a’ ’b’ ’c’},[-1 0.2 3])
+1
-1.X^(1)
+16/5.X^(1 2)

2A bit more than 11 seconds on a personal laptop

6



>> toIIxp(ans)
+1
-1.X^(1)
+3.2.X^(1 2)

There are two ways of estimating an IIsym object:estimate.m and fastestimate.m.
The first one takes an IIsym object P and a list of drivers and replaces the it-
erated integrals by their actual values. The result is a symbolic object, a vector
of length d, where d the number of datapoints. One could then evaluate the
object by setting particular values to the abstract variables. This, however, is
so slow as being completely impractical. If your goal is to estimate the actual
value of an IIsym object given the value of all its variables and the drivers,
use fastestimate.m. This function requires values for all variables and the
drivers but is 1000 times faster3 than using estimate.m first and then subs.m
to instantiate the symbolic object.

As a example, let’s approximate the SDE dyt = (at + b)dt + (ct + d)dWt in
the general case, and use it for particular values.

>> P=IIsym;
>> for k=1:5,P=’y0’+X(’a’*P+’b’,[1])+X(’c’*P+’d’,[2]);end;
>> dt=1E-3;resolution=1E3;
>> Drivers=[dt*(0:resolution-1);[0 cumsum(randn(1,resolution-1)*sqrt(dt))]];
>> y=fastestimate(P,{’a’ ’b’ ’c’ ’d’ ’y0’},{1 2 3 4 1},Drivers);plot(y);hold on
>> y=fastestimate(P,{’a’ ’b’ ’c’ ’d’ ’y0’},{-1 2 -3 4 1},Drivers);plot(y);

3Basically it boils down to the difference between manipulating a big array of symbolic
objects and a big array of doubles.

7


