Rough Paths Rough Bibliography

[Aze82] Robert Azencott. Formule de Taylor stochastique et développement asymptotique d'intégrales de Feynman. In Seminar on Probability, XVI, Supplement, pages 237-285. Springer, Berlin, 1982.
[ bib | MathSciNet ]
[BA89] Gérard Ben Arous. Flots et séries de Taylor stochastiques. Probab. Theory Related Fields, 81(1):29-77, 1989.
[ bib | MathSciNet ]
[BB00] K. Burrage and P. M. Burrage. Order conditions of stochastic Runge-Kutta methods by B-series. SIAM J. Numer. Anal., 38(5):1626-1646 (electronic), 2000.
[ bib | MathSciNet ]
[BHL01] R. F. Bass, Ben Hambly, and Terry Lyons. Extending the Wong-Zakai theorem to reversible Markov processes. preprint, to appear in J. Eur. Math. Soc., 2001.
[ bib ]
[BL94] Nicolas Bouleau and Dominique Lépingle. Numerical methods for stochastic processes. John Wiley & Sons Inc., New York, 1994. A Wiley-Interscience Publication.
[ bib | MathSciNet ]
[Bou72] N. Bourbaki. Éléments de mathématique. Fasc. XXXVII. Groupes et algèbres de Lie. Chapitre II: Algèbres de Lie libres. Chapitre III: Groupes de Lie. Hermann, Paris, 1972. Actualités Scientifiques et Industrielles, No. 1349.
[ bib | MathSciNet ]
[Cas93] Fabienne Castell. Asymptotic expansion of stochastic flows. Probab. Theory Related Fields, 96(2):225-239, 1993.
[ bib | MathSciNet ]
[CDM01] Mireille Capitaine and Catherine Donati-Martin. The Lévy area process for the free Brownian motion. J. Funct. Anal., 179(1):153-169, 2001.
[ bib | MathSciNet ]
[CG95] Fabienne Castell and Jessica Gaines. An efficient approximation method for stochastic differential equations by means of the exponential Lie series. Math. Comput. Simulation, 38(1-3):13-19, 1995. Probabilités numériques (Paris, 1992).
[ bib | MathSciNet ]
[CG96] Fabienne Castell and Jessica Gaines. The ordinary differential equation approach to asymptotically efficient schemes for solution of stochastic differential equations. Ann. Inst. H. Poincaré Probab. Statist., 32(2):231-250, 1996.
[ bib | MathSciNet ]
[CG98] V. V. Chistyakov and O. E. Galkin. On maps of bounded p-variation with p>1. Positivity, 2(1):19-45, 1998.
[ bib | MathSciNet ]
[Che57] Kuo-Tsai Chen. Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula. Ann. of Math. (2), 65:163-178, 1957.
[ bib | MathSciNet ]
[Che58] Kuo-Tsai Chen. Integration of paths-a faithful representation of paths by non-commutative formal power series. Trans. Amer. Math. Soc., 89:395-407, 1958.
[ bib | MathSciNet ]
[CQ00] Laure Coutin and Zhongmin Qian. Stochastic differential equations for fractional Brownian motions. C. R. Acad. Sci. Paris Sér. I Math., 331(1):75-80, 2000.
[ bib | MathSciNet ]
[CQ02] Laure Coutin and Zhongmin Qian. Stochastic analysis, rough path analysis and fractional Brownian motions. Probab. Theory Related Fields, 122(1):108-140, 2002.
[ bib | MathSciNet ]
[DN98] R.M. Dudley and R. Norvaisa. An introduction to p-variation and Young integrals - with emphasis on sample functions of stochastic processes. Lecture given at the Centre for Mathematical Physics and Stochastics, Department of Mathematical Sciences, University of Aarhus, 1998.
[ bib ]
[DN99] Richard M. Dudley and Rimas Norvaisa. Differentiability of six operators on nonsmooth functions and p-variation, volume 1703 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1999. With the collaboration of Jinghua Qian.
[ bib | MathSciNet ]
[Dos76] Halim Doss. Liens entre équations différentielles stochastiques et ordinaires. C. R. Acad. Sci. Paris Sér. A-B, 283(13):Ai, A939-A942, 1976.
[ bib | MathSciNet ]
[Dos77] Halim Doss. Liens entre équations différentielles stochastiques et ordinaires. Ann. Inst. H. Poincaré Sect. B (N.S.), 13(2):99-125, 1977.
[ bib | MathSciNet ]
[Föl81] H. Föllmer. Calcul d'Itô sans probabilités. In Seminar on Probability, XV (Univ. Strasbourg, Strasbourg, 1979/1980) (French), pages 143-150. Springer, Berlin, 1981.
[ bib | MathSciNet ]
[GL94] J. G. Gaines and Terry Lyons. Random generation of stochastic area integrals. SIAM J. Appl. Math., 54(4):1132-1146, 1994.
[ bib | MathSciNet ]
[GL97] J. G. Gaines and Terry Lyons. Variable step size control in the numerical solution of stochastic differential equations. SIAM J. Appl. Math., 57(5):1455-1484, 1997.
[ bib | MathSciNet ]
[HL98] Ben Hambly and Terry Lyons. Stochastic area for Brownian motion on the Sierpinski gasket. Ann. Probab., 26(1):132-148, 1998.
[ bib | MathSciNet ]
[HL02] Ben Hambly and Terry Lyons. Uniqueness for the Signature of a Path of Bounded Variation. Preprint, 2002.
[ bib ]
[Hu92] Yao Zhong Hu. Série de Taylor stochastique et formule de Campbell-Hausdorff, d'après Ben Arous. In Séminaire de Probabilités, XXVI, volume 1526 of Lecture Notes in Math., pages 579-586. Springer, Berlin, 1992.
[ bib | MathSciNet ]
[IW81] Nobuyuki Ikeda and Shinzo Watanabe. Stochastic differential equations and diffusion processes. North-Holland Publishing Co., Amsterdam, 1981.
[ bib | MathSciNet ]
[IW89] Nobuyuki Ikeda and Shinzo Watanabe. Stochastic differential equations and diffusion processes. North-Holland Publishing Co., Amsterdam, second edition, 1989.
[ bib | MathSciNet ]
[KP92] Peter Kloeden and Eckhard Platen. Numerical solution of stochastic differential equations. Springer-Verlag, Berlin, 1992.
[ bib | MathSciNet ]
[KPS94] Peter Kloeden, Eckhard Platen, and Henri Schurz. Numerical solution of SDE through computer experiments. Springer-Verlag, Berlin, 1994. With 1 IBM-PC floppy disk (3.5 inch; HD).
[ bib | MathSciNet ]
[Kun80] Hiroshi Kunita. On the representation of solutions of stochastic differential equations. In Seminar on Probability, XIV (Paris, 1978/1979) (French), pages 282-304. Springer, Berlin, 1980.
[ bib | MathSciNet ]
[Lej02a] Antoine Lejay. An introduction to rough paths. preprint, http://www.iecn.u-nancy.fr/~lejay/rough.html, 2002.
[ bib ]
[Lej02b] Antoine Lejay. Stochastic differential equations driven by a processes generated by divergence form operators. preprint, http://www.iecn.u-nancy.fr/~lejay/rough.html, 2002.
[ bib ]
[Lév51] Paul Lévy. Wiener's random function, and other Laplacian random functions. In Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, pages 171-187, Berkeley and Los Angeles, 1951. University of California Press.
[ bib | MathSciNet ]
[Lév65] Paul Lévy. Processus stochastiques et mouvement brownien. Gauthier-Villars & Cie, Paris, 1965.
[ bib | MathSciNet ]
[Lév92] Paul Lévy. Processus stochastiques et mouvement brownien. Éditions Jacques Gabay, Sceaux, 1992. Followed by a note by M. Loève, Reprint of the second (1965) edition.
[ bib | MathSciNet ]
[LL02a] Xiang Dong Li and Terry Lyons. Smoothness of the Itô map on p-rough path spaces (I): 1<p<2. preprint, 2002.
[ bib ]
[LL02b] Terry Lyons and Antoine Lejay. On the importance of the Lévy area for systems controlled by converging stochastic processes. application to homogenization. preprint, http://www.iecn.u-nancy.fr/~lejay/rough.html, 2002.
[ bib ]
[LLQ02] Michel Ledoux, Terry Lyons, and Zhongmin Qian. Lévy area of Wiener processes in Banach spaces. Ann. Probab., 30(2):546-578, 2002.
[ bib | MathSciNet ]
[Lot02] Sergey Lototsky. Small perturbation of stochastic parabolic equations: a power series analysis. J. Funct. Anal., 193(1):94-115, 2002.
[ bib | MathSciNet ]
[LQ96] Terry Lyons and Zhongmin Qian. Calculus for multiplicative functionals, Itô's formula and differential equations. In Itô's stochastic calculus and probability theory, pages 233-250. Springer, Tokyo, 1996.
[ bib | MathSciNet ]
[LQ97a] Terry Lyons and Zhongmin Qian. Calculus of variation for multiplicative functionals. In New trends in stochastic analysis (Charingworth, 1994), pages 348-374. World Sci. Publishing, River Edge, NJ, 1997.
[ bib | MathSciNet ]
[LQ97b] Terry Lyons and Zhongmin Qian. A class of vector fields on path spaces. J. Funct. Anal., 145(1):205-223, 1997.
[ bib | MathSciNet ]
[LQ97c] Terry Lyons and Zhongmin Qian. Flow equations on spaces of rough paths. J. Funct. Anal., 149(1):135-159, 1997.
[ bib | MathSciNet ]
[LQ97d] Terry Lyons and Zhongmin Qian. Stochastic Jacobi fields and vector fields induced by varying area on path spaces. Probab. Theory Related Fields, 109(4):539-570, 1997.
[ bib | MathSciNet ]
[LQ98] Terry Lyons and Zhongmin Qian. Flow of diffeomorphisms induced by a geometric multiplicative functional. Probab. Theory Related Fields, 112(1):91-119, 1998.
[ bib | MathSciNet ]
[LQ02] Terry Lyons and Zhongmin Qian. System Control and Rough Paths. Oxford University Press, 2002. Oxford Mathematical Monographs.
[ bib ]
[LQZ02] Michel Ledoux, Zhongmin Qian, and T. Zhang. Large deviations and support theorem for diffusion processes via rough paths. To appear in Stoch. Proc. Appl., 2002.
[ bib ]
[LS96] Terry Lyons and Lucretiu Stoica. On the limit of stochastic integrals of differential forms. In Stochastic processes and related topics (Siegmundsberg, 1994), pages 61-66. Gordon and Breach, Yverdon, 1996.
[ bib | MathSciNet ]
[LS99] Terry Lyons and Lucretiu Stoica. The limits of stochastic integrals of differential forms. Ann. Probab., 27(1):1-49, 1999.
[ bib | MathSciNet ]
[LV02] Terry Lyons and Nicolas Victoir. Cubature on Wiener space. preprint, 2002.
[ bib ]
[Lyo94] Terry Lyons. Differential equations driven by rough signals. I. An extension of an inequality of L. C. Young. Math. Res. Lett., 1(4):451-464, 1994.
[ bib | MathSciNet ]
[Lyo95] Terry Lyons. The interpretation and solution of ordinary differential equations driven by rough signals. In Stochastic analysis (Ithaca, NY, 1993), pages 115-128. Amer. Math. Soc., Providence, RI, 1995.
[ bib | MathSciNet ]
[Lyo98] Terry Lyons. Differential equations driven by rough signals. Rev. Mat. Iberoamericana, 14(2):215-310, 1998.
[ bib | MathSciNet ]
[LZ99] Terry Lyons and Ofer Zeitouni. Conditional exponential moments for iterated Wiener integrals. Ann. Probab., 27(4):1738-1749, 1999.
[ bib | MathSciNet ]
[Mey91] P.-A. Meyer. Sur deux estimations d'intégrales multiples. In Séminaire de Probabilités, XXV, volume 1485 of Lecture Notes in Math., pages 425-426. Springer, Berlin, 1991.
[ bib | MathSciNet ]
[Pla81] Eckhard Platen. A Taylor formula for semimartingales solving a stochastic equation. In Stochastic differential systems (Visegrád, 1980), pages 157-164. Springer, Berlin, 1981.
[ bib | MathSciNet ]
[PW82] Eckhard Platen and Wolfgang Wagner. On a Taylor formula for a class of Itô processes. Probab. Math. Statist., 3(1):37-51 (1983), 1982.
[ bib | MathSciNet ]
[Reu93] Christophe Reutenauer. Free Lie algebras. The Clarendon Press Oxford University Press, New York, 1993. Oxford Science Publications.
[ bib | MathSciNet ]
[Sip93] E.-M. Sipiläinen. A pathwise view of solutions of stochastic differential equations. PhD thesis, University of Edinburgh, 1993.
[ bib ]
[Str87] Robert S. Strichartz. The Campbell-Baker-Hausdorff-Dynkin formula and solutions of differential equations. J. Funct. Anal., 72(2):320-345, 1987.
[ bib | MathSciNet ]
[Sus78] Héctor J. Sussmann. On the gap between deterministic and stochastic ordinary differential equations. Ann. Probability, 6(1):19-41, 1978.
[ bib | MathSciNet ]
[Var84] V. S. Varadarajan. Lie groups, Lie algebras, and their representations, volume 102 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1984. Reprint of the 1974 edition.
[ bib | MathSciNet ]
[Wil98] David R. E. Williams. Solutions of differential equations driven by càdlàg paths of finite p-variation. PhD thesis, Imperial College, London, 1998.
[ bib ]
[Wil00] David R. E. Williams. Diffeomorphic flows driven by Lévy processes. preprint, 2000.
[ bib ]
[Wil01] David R. E. Williams. Path-wise solutions of stochastic differential equations driven by Lévy processes. Rev. Mat. Iberoamericana, 17(2):295-329, 2001.
[ bib | MathSciNet ]
[Yam79] Yuiti Yamato. Stochastic differential equations and nilpotent Lie algebras. Z. Wahrsch. Verw. Gebiete, 47(2):213-229, 1979.
[ bib | MathSciNet ]
[You36] L. C. Young. An inequality of Hölder type connected with Stieltjes integration. Acta Math., (67):251-282, 1936.
[ bib ]

This file has been generated by bibtex2html 1.52 Djèlil Chafaï